Author:
Hawthorne Frank C.,Sokolova Elena,Agakhanov Atali A.,Pautov Leonid A.,Karpenko Vladimir Yu.,Grew Edward S.
Abstract
ABSTRACTThe hyalotekite group has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (memorandum 57–SM/16). The general formula of the minerals of the hyalotekite group may be written as: A2B2M2[Si8T4O28]W where A = Ba2+, Pb2+ or K+; B = Ba2+, Pb2+ or K+; M = Ca2+, Y3+ or REE3+; T = Si4+, B3+ or Be2+; and W = F– or □ (where REE = rare-earth elements and □ = vacancy).Four minerals are currently known in this group: hyalotekite, Ba4Ca2[Si8B2(SiB)O28]F, triclinic, I$\bar 1$; khvorovite, Pb2+4Ca2[Si8B2(SiB)O28]F, triclinic I$\bar 1$; kapitsaite-(Y), Ba4(YCa)[Si8B2B2O28]F, triclinic, I$\bar 1$; and itsiite Ba4Ca2[Si8B4O28]□, tetragonal, I$\bar 4$2m.We explore the possible end-member compositions within this group by conflating the properties of an end-member with the stoichiometry imposed by the bond topology of the hyalotekite structure-type and the crystal-chemical properties of its known constituents. There are two high-coordination sites in the hyalotekite structure, A and B, and occupancy of each of these sites can be determined only by crystal-structure refinement. If these two sites are considered together, there are 19 end-member compositions of the triclinic structure and six end-member compositions of the tetragonal structure involving A and B = Ba2+, Pb2+, K+; M = Ca2+, Y3+, REE3+; and T = Si4+, B3+, Be2+. There is the possibility for many other hyalotekite-group minerals, and two potential new minerals have been identified from data in the literature.
Subject
Geochemistry and Petrology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献