Crystal structure determination of karibibite, an Fe3+ arsenite, using electron diffraction tomography

Author:

Colombo Fernando,Mugnaioli Enrico,Vallcorba Oriol,García Alberto,Goñi Alejandro R.,Rius Jordi

Abstract

AbstractThe crystal structure of karibibite, Fe33+(As3+O2)4(As23+O5)(OH), from the Urucum mine (Minas Gerais, Brazil), was solved and refined from electron diffraction tomography data [R1 = 18.8% for F > 4σ(F)] and further confirmed by synchrotron X-ray diffraction and density functional theory (DFT) calculations. The mineral is orthorhombic, space group Pnma and unit-cell parameters (synchrotron X-ray diffraction) are a = 7.2558(3), b = 27.992(1), c = 6.5243 (3) Å, V = 1325.10(8) Å3, Z = 4. The crystal structure of karibibbite consists of bands of Fe3+O6 octahedra running along a framed by two chains of AsO3 trigonal pyramids at each side, and along c by As2O5 dimers above and below. Each band is composed of ribbons of three edge-sharing Fe3+O6 octahedra, apex-connected with other ribbons in order to form a kinked band running along a. The atoms As(2) and As(3), each showing trigonal pyramidal coordination by O, share the O(4) atom to form a dimer. In turn, dimers are connected by the O(3) atoms, defining a zig-zag chain of overall (As3+O2)n-n stoichiometry. Each ribbon of (Fe3+O6) octahedra is flanked on both edges by the (As3+O2)n-n chains. The simultaneous presence of arsenite chains and dimers is previously unknown in compounds with As3+. The lone-electron pairs (4s2) of the As(2) and As(3) atoms project into the interlayer located at y = 0 and y = ½, yielding probable weak interactions with the O atoms of the facing (AsO2) chain.The DFT calculations show that the Fe atoms have maximum spin polarization, consistent with the Fe3+ state.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3