A long-term experimental study of the reactivity of basement rock with highly alkaline cement waters: Reactions over the first 15 months

Author:

Rochelle C. A.,Milodowski A. E.,Bateman K.,Moyce E. B. A.,Kilpatrick A.

Abstract

AbstractA series of long-term laboratory experiments was started in 1995 to investigate longer-term dissolution/ precipitation reactions that may occur in the alkaline disturbed zone surrounding a cementitious repository for radioactive waste. They consist of samples of UK basement rock reacting with either Na-K-Ca-OH water ('young' cement porewater) or Ca-OH water ('evolved' cement porewater) at 70°C. This paper summarizes results of reactions occurring over the first 15 months. Experiments of both fluid types showed many similar features, though primary mineral dissolution and secondary mineral precipitation were more extensive in the experiments involving Na-K-Ca (younger) cement porefluids compared to more evolved (Ca-rich) cement porefluids. Dissolution of dolomite, and to a lesser extent silicates (probably K-feldspar, but also possibly mica) occurred relatively rapidly at 70°C. Dolomite dissolution may have been a key factor in reducing pH values, and may be a key mineral in controlling the extent of alkaline disturbed zones. Dissolution was followed by precipitation of brucite close to dolomite grains, at least two generations of C-S-H phases (which may have contained variable amounts of K, Al and Mg); overgrowths of calcite; small crystals of hydroxyapophyllite; and elongate crystals of celestite. Though hydroxyapophyllite was observed (a phase commonly associated with zeolites), there was no evidence for the formation of zeolites in the experiments. Fluid chemical changes track the mineralogical changes, with C-S-H phases being a major control on fluid chemistry. In the 'young' porewater experiments there were decreases in pH, and K, Ca and Mg concentrations, together with transitory increases in SiO2 concentrations. In the 'evolved' porewater experiments there were decreases in pH, Mg, Ca and Sr concentrations, together with small increases in K and SiO2 concentrations. A number of experiments are still running, and will be sampled in coming years.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3