Author:
Cempírek J.,Houzar S.,Novák M.
Abstract
AbstractEuhedral crystals of complexly zoned niobian titanite (up to 0.3 mm) are enclosed in hedenbergite (Hd53—81Di15—43Jh3-5) and quartz from a hedenbergite vein skarn at Kamenne doly near Pisek, Czech Republic. They are associated with minor clinozoisite-epidote (Ps3—22), calcite, plagioclase (An95). scapolite (Me80—82), scheelite, pyrrhotite, fluorapatite, arsenopyrite, native bismuth and Bi,Te-minerals. The following textural and compositional subtypes were recognized: (I) Nb-rich titanite, (II) Nb-moderate titanite in the central zone, (III) Nb-poor, Sn-enriched titanite and (IV) Nb-poor, Al,F-rich titanite in the outer zone. The substitution Al(Nb,Ta)Ti—2 is dominant in subtypes I and II, the titanite subtype I being characterized by elevated contents of Al ≤ 0.257 atoms per formula unit (a.p.f.u.), Nb (≤ 0.161 a.p.f.u.) and Ta (≤ 0.037 a.p.f.u.). Amounts of Al, Nb and Ta in subtype II are smaller and more variable. The minor substitution SnTi—1 occurs chiefly in titanite subtype III with a content of Sn ≤ 0.039 a.p.f.u.. The substitution Al(F,OH)(TiO)_i is typical for titanite subtype IV exhibiting elevated contents of Al (s£ 0.221 a.p.f.u.), F (≤ 0.196 a.p.f.u.) and Fe (≤ 0.039 a.p.f.u.).The negative relationship of substitutions Al(F,OH)(TiO)_i vs. SnTi—1 and Al(Nb,Ta)Ti—1 is constrained chiefly by crystal structure rather than by the composition of parent medium alone. Textural relations suggest that the Nb-moderate titanite in the core zone and entire outer zone are products of fluids-induced dissolution-reprecipitation processes. The studied niobian titanite represents a new F-enriched type from a medium-grade, calc-silicate rock.
Subject
Geochemistry and Petrology