Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup)

Author:

Grew E. S.,Hålenius U.,Pasero M.,Barbier J.

Abstract

AbstractMinerals isostructural with sapphirine-1A, sapphirine-2M, and surinamite are closely related chain silicates that pose nomenclature problems because of the large number of sites and potential constituents, including several (Be, B, As, Sb) that are rare or absent in other chain silicates. Our recommended nomenclature for the sapphirine group (formerly aenigmatite group) makes extensive use of precedent, but applies the rules to all known natural compositions, with flexibility to allow for yet undiscovered compositions such as those reported in synthetic materials. These minerals are part of a polysomatic series composed of pyroxene or pyroxene-like and spinel modules, and thus we recommend that the sapphirine supergroup should encompass the polysomatic series. The first level in the classification is based on polysome, i.e. each group within the supergroup corresponds to a single polysome. At the second level, the sapphirine group is divided into subgroups according to the occupancy of the two largestMsites, namely, sapphirine (Mg), aenigmatite (Na), and rhönite (Ca). Classification at the third level is based on the occupancy of the smallestMsite with most shared edges,M7, at which the dominant cation is most often Ti (aenigmatite, rhönite, makarochkinite), Fe3+(wilkinsonite, dorrite, høgtuvaite) or Al (sapphirine, khmaralite); much less common is Cr (krinovite) and Sb (welshite). At the fourth level, the two most polymerizedTsites are considered together, e.g. ordering of Be at these sites distinguishes høgtuvaite, makarochkinite and khmaralite. Classification at the fifth level is based on XMg= Mg/(Mg + Fe2+) at theMsites (excluding the two largest andMl). In principle, this criterion could be expanded to include other divalent cations at these sites, e.g. Mn. To date, most minerals have been found to be either Mg-dominant (XMg> 0.5), or Fe2+-dominant (XMg< 0.5), at theseMsites. However, XMgranges from 1.00 to 0.03 in material described as rhönite, i.e. there are two species present, one Mg-dominant, the other Fe2+-dominant. Three other potentially new species are a Mg-dominant analogue of wilkinsonite, rhönite in the Allende meteorite, which is distinguished from rhonite and dorrite in that Mg rather than Ti or Fe3+is dominant atMl, and an Al-dominant analogue of sapphirine, in which Al > Si at the two most polymerizedTsitesvs. Al < Si in sapphirine. Further splitting of the supergroup based on occupancies other than those specified above is not recommended.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3