Regeneration of high-silica zeolites after sulfamethoxazole antibiotic adsorption: a combined in situ high-temperature synchrotron X-ray powder diffraction and thermal degradation study

Author:

Leardini L.,Martucci A.,Braschi I.,Blasioli S.,Quartieri S.

Abstract

AbstractThe thermal regeneration of sulfamethoxazole (SMX)-loaded Y and ZSM-5 zeolites was studied using a combined in situ high-temperature synchrotron X-ray powder diffraction and thermal degradation study. The evolution of the structural features was monitored in real time in the 30–575°C temperature range by full-profile Rietveld analysis. SMX thermal degradation pathways into high-silica zeolite antibiotic adducts, as well as the release of evolved species are similar to those for pure SMX. The adsorption/desorption process occurs without any significant loss of zeolite crystallinity, though slight deformations to the channel apertures are observed. Regenerated zeolites regain almost perfectly ‘bare’ (i.e. unloaded) material unit-cell parameters and only a slight memory effect, in terms of structural deformations induced by the process, is registered in the channel geometry. Interestingly, these changes do not affect the adsorption properties of the regenerated samples, which are able to re-adsorb comparable amounts of antibiotic molecules as in the first adsorption cycle.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3