Zeolites at high pressure: A review

Author:

Gatta G. D.,Lee Y.

Abstract

AbstractThis is a review of the elastic behaviour and pressure (P)-induced structural evolution of zeolites and presents a comparative analysis of the deformation mechanisms of the Si/Al-framework and the rearrangement of the extra-framework species in response to applied pressure. The interaction betweenP-transmitting fluids and zeolites, which can lead to phenomena such as ‘P-induced over-hydration’, is described. The comparative elastic analysis and the high-Pstructural data of zeolites reported so far allow us to make some generalizations: (1) The range of compressibility among this class of openframework silicates is large, with bulk moduli ranging between 15 and 70 GPa; (2) Microporosity does not necessarily imply high compressibility, as several zeolites are less compressible than other nonzeolitic rock-forming minerals; (3) Compressibilities of zeolites do not seem to be directly related to microporosity, at least if we model microporosity with the ‘framework density’; (4) The flexibility observed in zeolites under hydrostatic compression is mainly governed by tilting of rigid tetrahedra around O atoms that behave as hinges within the framework. Pressure-induced tilting commonly leads to continuous rearrangement of the framework without any phase transition. More rarely, tilting induces displacive phase transitions and isothermalP-induced reconstructive phase transitions (i.e. with change in framework topology), have not been reported in this class of materials; (5) Deformation mechanisms in response to applied pressure are generally dictated by the topological configuration of the framework rather than the Si/Al-distribution or the extra-framework content. The channel content governs the compressibility of the cavities, leading to different unit-cell-volume compressibilities in isotypic structures.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3