Author:
Cooper M. A.,Hawthorne F. C.
Abstract
AbstractThe crystal structure of tedhadleyite, ideally Hg2+Hg101+O4l2(Cl,Br)2,triclinic, AĪ, a 7.0147(5), b 11.8508(7), c 12.5985(8) Å, α 115.583(5), β 82.575(2), γ 100.619(2)º, V 927.0(2) Å3, Z = 2,was solved by direct methods and refined to an R1 index of 4.5% for 2677 unique reflections. There are six symmetrically distinct Hg sites in tedhadleyite: Hg(1) is occupied by Hg2+ and Hg(2–6) are occupied by Hg+ that forms three [Hg–Hg]2+ dimers with Hg–Hg separations between 2.527 and 2.556 Å. These [Hg–Hg]2+ dimers have strong covalent bonds to O atoms,forming pseudo-linear O–Hg–Hg–O arrangements,and weak bonds to halogen and O atoms at high angles to the dimer axis. The [O–Hg–Hg-O] groups share anions to form four-membered square rings of composition [Hg8O4] that link along [100] via [O–Hg–Hg-O] groups and along [001] via [O–Hg–O] groups, forming rectangular rings of composition [Hg14O8]. The rings form a corrugated layer that interweaves with a symmetrically related layer whereby the [O–Hg(6)–Hg(6)–O] linking groups of one layer pass through the centres of the square [Hg8O4] rings of the other layer to form [Hg11O4] complex slabs parallel to (010) that link through Hg-I and Hg-Br,Cl bonds.
Subject
Geochemistry and Petrology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Eddavidite, Cu12Pb2O15Br2, a New Mineral Species, and Its Solid Solution with Murdochite, Cu12Pb2O15Cl2;Minerals;2024-03-15
2. The first occurrence of the carbide anion, C4–, in an oxide mineral: Mikecoxite, ideally (CHg4)OCl2, from the McDermitt open-pit mine, Humboldt County, Nevada, U.S.A.;American Mineralogist;2023-03-01
3. Gaildunningite, Ideally Hg2+3[NHg2+2]18(Cl,I)24, a New Mineral from the Clear Creek Mine, San Benito County, California, USA: Description and Crystal Structure;The Canadian Mineralogist;2019-05-14
4. The crystal structure of gianellaite, [(NHg2)2](SO4)(H2O)x, a framework of (NHg4) tetrahedra with ordered (SO4) groups in the interstices;Mineralogical Magazine;2016-08
5. Discreditation of the mineral species churchite-(Nd) and iodine;European Journal of Mineralogy;2015-12-14