Bond topology and structure-generating functions: graph-theoretic prediction of chemical composition and structure in polysomatic T–O–T (biopyribole) and H–O–H structures

Author:

Hawthorne F. C.

Abstract

AbstractAspects of the bond topology and chemical composition of a mineral may be incorporated into a general formula by writing the local topological details of each cation and anion, along with their chemical identity, as a general expression called a structure-generating function. Here, this procedure is described for polysomatic T–O–T and H–O–H structures. We may write tetrahedrally coordinated cations and their associated anions as {T2nΘm}. For {T2nΘm} to be a chain or ribbon, 5n < m ≤ 6n, and we may write m as 5n + N, where N is an integer. Within the {T2nΘ(5n+N)}unit, we may recognize three types of anion vertices: (1) bridging anions, Θbr, that are bonded to two T cations; (2) apical anions, Θap, that are involved in linkage to other cations out of the plane of the bridging anions; and (3) linking anions, Θl, that link to non-T cations in the plane of the bridging anions. We may incorporate the connectivity of the cations in our algebraic representation of the chain as follows: {T2nΘbraΘapbΘlc} where a + b + c = 5n + N. The apical anions of the T- or H-sheets provide some anions of the layer of octahedra. We may use the handshaking di-lemma of graph theory to examine the interaction between the two types of layers, and write aStructure-Generating Function, S(N;n), that gives both the stoichiometry and aspects of the bond topology of the structures.Where N = 1, the T-sheet consists of ribbons of the form {T2nΘ(5n+1)} = {T2nΘbr(3n–1)Θap2nΘl2}. Each T–Θbr–T linkage spans an octahedron, and hence there are (3n – 1) octahedrally coordinated cations between opposing {T2nΘbr(3n–1)Θap2nΘl2} ribbons. There are an additional (n–1) vertices, Ψ, required to complete the coordination of the M cations on one side of the O-sheet, and we may write the structure-generating function for biopyriboles as follows: S(1;n)= Xi[M(3n–1)Ψ2(n–1){T2nΘbr(3n–1)Θap2nΘl2}2] = [M(3n–1)Ψ2(n–1){T2nΘ(5n+1)}2]. Where N = 2, the general form of the T-ribbon is {T2nΘ(5n+2)}, a component of the H-sheet in the polysomatic H–O–H minerals in which the T-ribbons are linked laterally by [5]- or [6]-coordinated high-valence cations, D, which have the coordination (Dφ41φapφt), where ftmay or may not be present depending on the coordination number, [6] or [5], of the D cation. The general formula for an H-sheet is [Dφap{T2nΘbr(3n–2)Θap2nΘl4t0–1], where φt(written after the T-sheet) occurs on the outside of the H-sheet and may be involved in linkage between adjacent H–O–H blocks. The H-sheet links via its apical anions to the O-sheet, giving the general formula of an H–O–H block as [M(3n+1)(DφapΨn{T2nΘ(5n+2)t0–1)2]. These H–O–H blocks may link directly or indirectly through the φt anions of the (DΘl4φapφt) octahedra, giving S(2;n)= Xi[M(3n+1)Ψ2n(D2φap2{T2nΘbr(3n–2)Θap2nΘl4}2t0–2]. Combining the expressions for the structure-generating functions gives a single function for T–O–T and H–O–H structures:S(N;n)= Xi[M(3n+2N–3)?2(n+N–2)(D2(N–1)f2ap(N–1){T2nT(3n–N)brT2napT2N1}2)f0–2(N–1)t]This expression also generates mixed-ribbon polysomatic structures. Thus S(1;2+3)gives the chemical composition and structure of the mixed-chain pyribole chesterite, and S(2;1+4)gives the chemical composition and structure of the mixed-chain H–O–H mineral, veblenite.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3