The tobermorite supergroup: a new nomenclature

Author:

Biagioni Cristian,Merlino Stefano,Bonaccorsi Elena

Abstract

AbstractThe name 'tobermorites' includes a number of calcium silicate hydrate (C-S-H) phases differing in their hydration state and sub-cell symmetry. Based on their basal spacing, closely related to the degree of hydration, 14, 11 and 9 Å compounds have been described. In this paper a new nomenclature scheme for these mineral species is reported. The tobermorite supergroup is defined. It is formed by the tobermorite group and the unclassified minerals plombièrite, clinotobermorite and riversideite. Plombièrite ('14 Å tobermorite') is redefined as a crystalline mineral having chemical composition Ca5Si6O16(OH)2·7H2O. Its type locality is Crestmore, Riverside County, California, USA. The tobermorite group consists of species having a basal spacing of ∼11 Å and an orthorhombic sub-cell symmetry. Its general formula is Ca4+x(AlySi6–y)O15+2xy·5H2O. Its endmember compositions correspond to tobermorite Ca5Si6O17·5H2O (x = 1 and y = 0) and the new species kenotobermorite, Ca4Si6O15(OH)2·5H2O (x = 0 and y = 0). The type locality of kenotobermorite is the N'Chwaning II mine, Kalahari Manganese Field, South Africa. Within the tobermorite group, tobermorite and kenotobermorite form a complete solid solution. Al-rich samples do not warrant a new name, because Al can only achieve a maximum content of 1/6 of the tetrahedral sites (y = 1). Clinotobermorite, Ca5Si6O17·5H2O, is a dimorph of tobermorite having a monoclinic sub-cell symmetry. Finally, the compound with a ∼9 Å basal spacing is known as riversideite. Its natural occurrence is not demonstrated unequivocally and its status should be considered as “questionable”. The chemical composition of its synthetic counterpart, obtained through partial dehydration of tobermorite, is Ca5Si6O16(OH)2. All these mineral species present an order-disorder character and several polytypes are known. This report has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3