A multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite

Author:

Gatta G. Diego,Rotiroti Nicola,Bersani Danilo,Bellatreccia Fabio,Ventura Giancarlo Della,Rizzato Silvia

Abstract

AbstractA multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite from Fosso Attici, Sacrofano, Italy was carried out on the basis of electron microprobe analysis in wavelength dispersive mode, singlecrystal X-ray diffraction (at 100 K), Raman and infrared spectroscopy. Thechemical formula of the merlinoite from Fosso Attici is (Na0.37K5.69)Σ=6.06(Mg0.01Ca1.93Ba0.40)Σ=2.34(Fe0.023+Al10.55Si21.38)Σ=31.9O64·19.6H2O,compatible with the ideal chemical formula K6Ca2[Al10Si22O64]·20H2O.Anisotropic structure refinements confirmed the symmetry and the framework model previously reported (space group Immm, a = 14.066(5),b = 14.111(5), c = 9.943(3) Å at 100 K). Refinement converged with four cationic sites and six H2O sites; refined bond distances of the framework tetrahedra suggest a highly disordered Si/Al-distribution. The Raman spectrum of merlinoite (collected between 100and 4000 cm–1) is dominated by a doublet of bands between 496–422 cm–1, assigned to tetrahedral T–O–T symmetric bending modes. T–O–T antisymmetric stretching is also observed; stretching and bending modes of the H2Omolecules are only clearly visible when using a blue laser. The single-crystal near-infrared spectrum shows a very weak band at 6823 cm–1, assigned to the first overtone of the O–H stretching mode, and a band at 5209 cm–1, due to the combination of H2Ostretching and bending modes. Avery broad and convoluted absorption, extending from 3700 to 3000 cm–1 occurs in the H2O stretching region, while the ν2 bending mode of H2O is found at 1649 cm–1. The powder mid-infraredspectrum of merlinoite between 400–1300 cm–1 is dominated by tetrahedral T–O–T symmetric and antisymmetric stretches. Raman and Fourier-transform infrared spectroscopy spectra of merlinoite and phillipsite provide a quick identification tool for these zeolites,which are often confused due to their close similarity.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3