Thermal expansion behaviour of orthopyroxenes: the role of the Fe-Mn substitution

Author:

Scandolo L.,Mazzucchelli M. L.,Alvaro M.,Nestola F.,Pandolfo F.,Domeneghetti M. C.

Abstract

AbstractTwo Pbca orthopyroxene samples, donpeacorite (DP N.1) and enstatite (B22 N.60) with chemical formulae Mn0.54Ca0.03Mg1.43Si2O6 (XMn = 0.27) and Fe0.54Ca0.03Mg1.43Si2O6 (XFe = 0.27), respectively, were investigated by single-crystal X-ray diffraction at high-temperature conditions.The nearly identical XFe and XMn make the two samples the perfect candidates to investigate the effect of the compositional change at the M2 site (i.e. Fe-Mn substitution) on the thermal expansion behaviour of orthopyroxenes.Therefore, the unit-cell parameter thermal expansion behaviour of both samples has been investigated in the temperature range between room T and 1073 K. No evidence for phase transitions was found over that range. The two samples have been previously disordered with an ex situ annealing at ∼1273 K.The unit-cell parameters and volume thermal expansion data, collected on the disordered samples, have been fitted to a Fei Equation of State (EoS) and the following coefficients obtained: V0 = 853.35(4) Å3, αV,303K = 2.31(24) × 10–5 K–1 and V0 = 845.40(6) Å3, αV,303K = 2.51(25) × 10–5 K–1 for DP N.1 and B22 N.60, respectively.While there is no difference in the volume thermal expansion coefficient as a function of composition and the expansion along the b direction is nearly identical for both samples, slight differences have been found along a and c lattice directions. The thermal expansion along the a direction is counterbalanced by that along c being responsible for the changes in lattice expansion scheme from αb > αc > αa at room T, to αc > αb > αa at high T. Therefore, as a result of the different behaviour along a and c, the unit-cell volume thermal expansion for both samples is identical within estimated standard deviations. The negligible effect of the Fe-Mn substitution on the bulk thermal expansion can be applied when dealing with geothermobarometry based on the elastic host-inclusion approach (e.g. Nestola et al., 2011; Howell et al., 2010; Angel et al., 2014 a, b, 2015). In fact, though the compressibility effect is still not known, the nearly identical thermal expansion coefficients will not affect the entrapment pressure (Pe).

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3