Bulachite, [Al6(AsO4)3(OH)9(H2O)4]⋅2H2O from Cap Garonne, France: Crystal structure and formation from a higher hydrate

Author:

Grey Ian E.ORCID,Yoruk Emre,Kodjikian Stéphanie,Klein Holger,Bougerol Catherine,Brand Helen E.A.,Bordet Pierre,Mumme William G.,Favreau Georges,Mills Stuart J.

Abstract

AbstractBulachite specimens from Cap Garonne, France, comprise two intimately mixed hydrated aluminium arsenate minerals with the same Al:As ratio of 2:1 and with different water contents. The crystal structures of both minerals have been solved using data from low-dose electron diffraction tomography combined with synchrotron powder X-ray diffraction. One of the minerals has the same powder X-ray diffraction pattern (PXRD) as for published bulachite. It has orthorhombic symmetry, space group Pnma with unit-cell parameters a = 15.3994(3), b = 17.6598(3), c = 7.8083(1) Å and Z = 4, with the formula [Al6(AsO4)3(OH)9(H2O)4]⋅2H2O. The second mineral is a higher hydrate with composition [Al6(AsO4)3(OH)9(H2O)4]⋅8H2O. It has the same Pnma space group and unit-cell parameters a = 19.855(4), b = 17.6933(11) and c = 7.7799(5) Å i.e. almost the same b and c parameters but a much larger a parameter. The structures are based on polyhedral layers, parallel to (100), of composition [Al6(AsO4)3(OH)9(H2O)4] and with H-bonded H2O between the layers. The layers contain [001] spiral chains of edge-shared octahedra, decorated with corner connected AsO4 tetrahedra that are the same as in the mineral liskeardite. The spiral chains are joined together by octahedral edge-sharing to form layers parallel to (100). Synchrotron PXRD patterns collected at different temperatures during heating of the specimen show that the higher-hydrate mineral starts transforming to bulachite when heated to 50°C, and the transformation is complete between 75 and 100°C.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3