Kaolinite-armoured polyurea microcapsules fabricated on Pickering emulsion: controllable encapsulation and release performance of a lipophilic compound

Author:

Li CunjunORCID,Wang Minghao,Liu Zhaoliang,Xu Yanqi,Zhou Chunhui,Wang Linjiang

Abstract

AbstractMicrocapsules are successfully used in various applications such as self-healing, drug delivery and military camouflage. The shells of the microcapsules based on the traditional surfactant-stabilized emulsion template method are often single organic materials. The surfactants generally have insufficient stability against demulsification during preparation of the microcapsules. In the present study, kaolinite was used as an emulsifier for stabilizing Pickering emulsions and subsequently as an enhancer for forming microcapsules. Kaolinite-armoured polyurea microcapsules were fabricated based on the interfacial polymerization of isophorone diisocyanate at the oil–water interfaces of kaolinite-stabilized Pickering emulsions. The prepared microcapsules with core–shell structure were spherical and exhibited good dispersibility in anhydrous ethanol. The shell thickness (~0.5–1.0 μm) and diameter (~20.0–160.0 μm) of kaolinite-armoured polyurea microcapsules may be tailored by varying the dosages of isophorone diisocyanate and kaolinite and the emulsifying speed of the high-shear homogenizer. Hence, the encapsulation and release performance of microcapsules may be controlled. The kaolinite particles were embedded and armoured in a polyurea matrix. The formed kaolinite-embedded and -armoured polyurea structures might prolong the release of the encapsulated lipophilic Sudan Red (III) from 20 to 45 h. The microcapsules have controllable encapsulation and release characteristics for lipophilic compounds and are cost effective, making them suitable pesticides.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3