Adsorption behaviour of clomazone on inorganic and organically modified natural montmorillonite from Bogovina (Serbia)

Author:

Kaluđerović LazarORCID,Tomić Zorica P.,Đurović-Pejčev Rada,Životić Ljubomir

Abstract

AbstractThe adsorption behaviour of the herbicide clomazone on inorganic and organically modified montmorillonite from the Bogovina deposit in Serbia was investigated. Montmorillonite was modified first with NaCl and then with organic complexes such as hexadecyltrimethylammonium bromide (HDTMA) and phenyltrimethylammonium chloride (PTMA). Changes in the surface properties and morphology of the montmorillonite before and after the modification with various concentrations of organic complexes were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Adsorption of clomazone on all examined samples was investigated using the batch adsorption method. Montmorillonite modified with HDTMA-bromide displayed greater uptake of the clomazone compared to the PTMA-montmorillonite, and both organically modified montmorillonites displayed greater uptake of the herbicide compared to the inorganic montmorillonite. Comparing the Freundlich coefficient and maximum adsorbed clomazone quantity values obtained by Langmuir model, the levels of adsorption of clomazone decreased in the following order: HDTMA-montmorillonite with 1.00 cation-exchange capacity (CEC) saturation > HDTMA-montmorillonite with 0.75 CEC saturation > PTMA-montmorillonite with 1.00 CEC saturation > PTMA-montmorillonite with 0.75 CEC saturation > HDTMA-montmorillonite with 0.50 CEC saturation > HDTMA-montmorillonite with 0.25 CEC saturation > PTMA-montmorillonite with 0.50 CEC saturation > PTMA-montmorillonite with 0.25 CEC saturation > Na-montmorillonite > raw sample. The type and content of an organic cation plays an important role in the behaviour of clomazone in a solid/liquid system. It is concluded that organically modified montmorillonite from Bogovina might be used as an effective adsorbent for clomazone.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3