Author:
Cade C. A.,Evans I. J.,Bryant S. L.
Abstract
AbstractBy modelling a range of rock-forming processes such as compaction and various styles of cementation, a new understanding of how they affect pore-system geometry, and hence permeability, has been gained. For example, almost identical permeability-porosity trends result from progressive compaction or grain overgrowth cementation in a clean sandstone, and these trends are curvilinear on the traditional log-linear plot. The steepening which defines the curve marks the onset of pore-throat blocking. Other cement styles, such as pore-filling carbonates or grain-rimming clays, show different porosity-permeability trends. This new understanding can be used predictively (predicting permeability from predictions of grain size and diagenetic style), or as a tool for identifying the important permeability controls in a set of field data. This latter application is presented and illustrated using data from a variety of sandstone types. This approach has important advantages over commonly used multivariate statistical analysis approaches. It can quickly provide a good understanding of what are (and are not) the important controls on permeability. It also provides a basis for more focused and meaningful statistical analysis to quantify these controls.
Subject
Geochemistry and Petrology
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献