Abstract
AbstractThe thermal behaviour of a ferrous doped kaolin has been studied by Mössbauer spectroscopy and electron paramagnetic resonance spectroscopy. From the observations it is concluded that the iron substitutes trioctahedrally as Fe2+ in the ‘gibbsite-like’ sheet in place of dioctahedral aluminium. The g = 2 EPR signal is shown to be associated with these ferrous ‘cells’ which appear to occur in clusters. It is suggested that these ferrous cells are trapped within the normal dioctahedral aluminium structure. Dehydroxylation of the ferrous iron cells takes place between 623 and 673 K leading to the formation of an iron-rich pyroxene and, by 723 K, a ferric oxide. At temperatures > 723 K the pyroxene itself oxidizes to a second ferric oxide. The EPR signal changes at 623 K and disappears at 723 K. The signal is attributed to a trapped hole induced by X-irradiation, located near a silicon atom on the boundary between normal dioctahedral cells and trioctahedral Fe2+ cells. It is possible to extend the model to explain some puzzling features concerning the g = 2 EPR signals reported by other authors and to propose other effects which might result from the presence of these cells.
Subject
Geochemistry and Petrology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献