The physical dimensions of fundamental clay particles

Author:

Nadeau P. H.

Abstract

AbstractThe thickness, length, width, area and perimeter of 575 particles from 16 aqueously dispersed samples of a variety of interstratified clays, smectites and illite have been recorded using TEM techniques. Complete dispersion of the clay material was achieved by saturating the clay with either Na+ or Li+, removal of excess ions by dialysis, and isolation of the <0·1 or <0·2 µm fraction by centrifugation. The samples have mean maximum dimensions of 1900 to 90 nm and the dispersed system can be considered as colloidal in nature. The mean thickness of the clays is about 1 nm for smectites, corresponding to that of elementary 2:1 silicate layers, from 1·9 to 4·9 nm for the interstratified clays, and 9 nm for illite. From these data the volume, total surface area and other parameters have been calculated and compared with independent determinations of surface area and CEC. The total surface area by TEM, assuming a density of 2·6 g/cm3, varies from ∼675 m2/g for smectites to 86 m2/g for illite, and is inversely proportional to the mean particle thickness. The charge density of monovalent cation exchange sites on the surface of the particles as determined for nine of the samples varies from 0·54 to 1·16 nm2/site. The particle-thickness distribution data can be used to calculate interstratified XRD layer-sequence probabilities and composition parameters, and agree with XRD data for interstratified clay with <60% illite layers. The thickness data also provide a rationale for the interpretation of TEM lattice-fringe images. Relationships between the particle area, length, thickness and volume are shown to be potentially useful in assessing the mechanism(s) of crystal growth of these extremely small phyllosilicate particles.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3