Geomimicry: harnessing the antibacterial action of clays

Author:

Williams Lynda B.

Abstract

AbstractA decade of research on clays that kill human pathogens, including antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA), has documented their common characteristics. Worldwide, ∼5% of clays tested to date are antibacterial when hydrated. Most antibacterial clays are from hydrothermally altered volcanics, where volcanogenic fluids produce minerals containing reduced metals. Ferruginous illite-smectite (I-S) is the most common clay mineral, although kaolins dominate some samples. Antibacterial clay mineral assemblages may contain other reduced Fe minerals (e.g. pyrite) that drive production of reactive oxygen species (H2O2, OH, O2) and cause damage to cell membranes and intracellular proteins. Ion exchange can also cause loss of bacterial membrane-bound Ca2+, Mg2+ and PO43–.Critically important is the role of clays in buffering the hydration water pH to conditions where Al and Fe are soluble. A nanometric particle size (<200 nm) is characteristic of antibacterial clays and may be a feature that promotes dissolution. Clay interlayers or the lumen of tubular clays may absorb reduced transition metals, protecting them from oxidation. When the clays are mixed with deionized water for medicinal applications, these metals are released and oxidized.Different antibacterial clays exhibit different modes of action. The minerals may be a source of toxins, or by adsorption may deprive bacteria of essential nutrients. In the field, the pH and Eh (oxidation state) of the hydrated clay may help to identify potential antibacterial clays. If the pH is circum-neutral, toxic metals are not soluble. However, at pH < 5 or >9 many metals are soluble and the oxidation of transition metals increases the Eh of the suspension to >400 mV, leading to bacterial oxidation.Understanding the antibacterial mechanism of natural clay may lead to design of new treatments for antibiotic-resistant bacteria, with potential applications in wound dressings, medical implants ( joint replacements, catheters), animal feed stocks, agricultural pathogens, and production of antibacterial building materials. This research exemplifies how ‘geomimicry’ (copying geochemical processes) may open new frontiers in science.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3