The use of combined thermal analysis to study crystallization, pore structure, catalytic activity and deactivation of synthetic zeolites

Author:

Gabelica Z.,Nagy J. B.,Derouane E. G.,Gilson J.-P.

Abstract

AbstractEmphasis is placed on the advantages of combining simultaneous thermal analysis methods (TG-DTA-DTG) with other complementary physico-chemical techniques for investigating synthesis and various properties of zeolites belonging to the pentasil family. TG and DTA give quantitative information on the dehydration and decomposition of organic guest molecules that interact with intermediate phases obtained during hydrothermal transformation of amorphous aluminosilicate gels into crystalline zeolites. In particular, weight losses (TG) and heat effects (DTA) due to the oxidative decomposition of tetrapropylammonium ions occluded in an intermediate phase have been related to the amount of zeolite ZSM-5 present. As a result, very small particles of this zeolite, amorphous to X-rays, could be detected in the early stages of the crystallization process. Isothermal sorption of small hydrocarbon molecules (n-hexane, 3-methyl-pentane) is used to probe the intracrystalline pore volume of zeolite ZSM-5. The total hydrocarbon uptake (TG) and the shape of the corresponding DTA peak are sensitive to steric modifications of the ZSM-5 channel system by various chemicals, while the sorption rates are better correlated to the extent of zeolite surface poisoning by boron or carbon. TG-DTA data provide an easy means of describing the filling and packing of n-hexane in ZSM-5 pore structure. Various steps characterizing isothermal competitive sorptions (nitrogen, ethylene, water) or catalytic conversions at high temperature (ethylene, methanol) over H-ZSM-5 are described. Finally, the progressive formation (removal) of carbonaceous residues resulting from these transformations are related to the actual rate of de-activation (re-activation) of a zeolitic material. In this respect, three different synthetic zeolites, namely mordenite, offretite and H-ZSM-5, which differ by their shape-selective properties and structure of their channel network, are investigated by TG.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3