Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study

Author:

Manceau A.,Calas G.

Abstract

AbstractThe mechanism of Ni-Mg substitution has been studied by X-ray absorption spectroscopy in phyllosilicates belonging mainly to the lizardite-nepouite and kerolite-pimelite series. Two types of information were obtained: (1) Analysis of nickel K-edge spectra under high resolution confirmed that Ni atoms were substituted for Mg atoms. There was no evidence for 4-fold coordinated Ni. (2) Extended X-ray absorption fine structure (EXAFS) was sensitive to atomic pair-correlations and gave access to the radial distribution function around Ni atoms. For all samples, this function gave two peaks. The first one was related to the (O,OH) coordination shell and analysis confirmed that Ni atoms were 6-fold coordinated. The amplitude of the second peak was very sensitive to the atomic composition of the Ni-Mg second shell. It is shown that the intracrystalline distribution of Ni is never random within the octahedral sheet; Ni atoms are segregated into domains, the minimum size of which has been calculated. In the kerolite-pimelite series the mean domain size is at least 30 Å and EXAFS could not exclude the existence of pure Ni sheets. X-ray dispersive spectroscopy combined with TEM suggested that the minerals in this series have pure Ni layers associated with pure Mg layers. In the lizardite-nepouite series, Ni atoms are segregated into specific Ni-enriched areas, the exent of which depends on the specific chemical constitution of the sample. Distribution patterns are discussed with respect to the formation mechanisms of these ore minerals.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3