Formation of alteration zones and kaolin genesis, Limnos Island, northeast Aegean Sea, Greece

Author:

Papoulis D.,Tsolis-Katagas P.

Abstract

AbstractKaolin deposits extending over an area of ~10 km2in the western and southern parts of Limnos Island, northeast Aegean Sea, Greece, were studied. The kaolin deposits are alteration products of volcanic rocks, mainly trachytes, trachyandesites, andesites and dacites. Study of the collected samples was carried out using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), energy-dispersive scanning electron microscopy (SEM-EDS), Fourier transform Raman spectroscopy (FT-Raman), Fourier transform infrared (FTIR) techniques and inductively-coupled plasma (ICP) bulk rock chemical analyses for major, trace and rare earth elements. The extensive alteration of the parent rocks resulted from the circulation of hydrothermal fluids through faults and fractures. The development of the various assemblages depends not only on the temperature and composition of the hydrothermal fluids but also on the distance of the rock from the fault or the channel of the ascending hydrothermal fluids.Kaolinite, dickite, halloysite, illite, smectite and mixed-layer illite-smectite and jarosite were detected in the altered volcanic rocks forming locally various alteration zones. Smectite-rich zones and illite-rich zones are relatively infrequent. In the halloysite-rich zones, the kaolinization of feldspars is accomplished in four stages. The kaolinizaton of feldspars in the kaolinite-dickite-rich zones follows five discrete stages. In the less altered rocks, thin layers of kaolinite are formed on the surface of feldspars. With increasing kaolinization, kaolinite is developed on the surface of feldspars forming extended parallel booklets of newly formed kaolinite. In the third stage, feldspar crystals are partially altered to kaolinite booklets. As kaolinization advances, kaolinite becomes well formed and, in the most altered rocks, feldspars are partially or completely altered to dickite books, depending on the temperature of the hydrothermal fluids.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3