Micromilieu-controlled glauconitization in fecal pellets at Oker (Central Germany)

Author:

Baldermann A.,Grathoff G. H.,Nickel C.

Abstract

AbstractAlthough numerous models for the formation of glauconite have been presented, the precise process and micro-environment of glauconitization are still poorly constrained. We characterize the special micromilieu of glauconitization developed during early diagenesis and present a model for glauconite formation in fecal pellets.Glauconitization at Oker (Central Germany) occurred predominantly in fecal pellets deposited in a shallow marine-lagoonal environment during the Kimmeridgian. Within the fecal pellets, rapid oxidation of organic matter provides the post-depositional, physicochemical conditions favourable for glauconitization. Replacements of matrix calcite, dissolution of detrital quartz, K-feldspar, and clay minerals, and Fe redox reactions were observed within the early micro-environment, followed by the precipitation of euhedral pyrite, matrix-replacive dolomite, and megaquartz accompanied by I-S formation as thin section analyses and SEM observations show. Carbonate geochemical compositions based on ICP-OES and stable oxygen and carbon isotope signatures demonstrate that glauconite formation started in a suboxic environment at a pH of 7–8 and a temperature of 22±3°C to 37±2°C at maximum.TEM-EDX-SAED and XRD analyses on separated glauconite fecal pellets and on the <2 μm clay mineral fraction reveal the predominance of authigenic 1Md-glauconite, 1Md-glauconite-smectite, and 1Mdcis-vacant I-S, besides accessory detrital 2M1-illite and montmorillonite. Kinetic modelling of the glauconite (93–94% Fe-illite layers and 6–7% Fe-smectite layers, R3) and of I-S (66–68% Al-illite layers and 32–34% Al-smectite layers, R1) leads us to conclude that the I-S formed solely by slow burial diagenesis, whereas the glauconite formed close to the seafloor, suggesting significantly faster kinetics of the glauconitization reaction compared with smectite-illitization related to burial diagenesis. Thermodynamically, the substitution of octahedral Al3+ for Fe3+ and Mg2+ during the Fe-Mg-smectite to glauconite reaction via the formation of glauconite-smectite mixed-layered clay minerals may have resulted in a higher reaction rate for this low-temperature glauconitization process.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3