Synthesis and characterization of Na-X, Na-A and Na-P zeolites and hydroxysodalite from metakaolinite

Author:

Novembre D.,di Sabatino B.,Gimeno D.,Pace C.

Abstract

AbstractThe present work deals with the hydrothermal synthesis of Na zeolites (Na-A, Na-X and Na-P) and hydroxysodalite using kaolinite calcined at 650°C as starting material. The focus was on definition of the most favourable conditions for the synthesis of zeolite Na-A and Na-X from metakaolin in order to economize on both energy (i.e. synthesis temperatures) and reaction time and to enlarge the field of pure and isolated synthesized phases. Metakaolin was mixed with calculated amounts of NaOH solution and sodium silicate and five sets of experiments were carried out at ambient pressure and 68±0.1°C varying the SiO2/Al2O3ratio from 2.2 to 7. Optimal conditions for crystallization of Na-A zeolite from kaolinite were reached with a SiO2/Al2O3ratio of 2.2 plus 4 M NaOH without adding sodium silicate; transformation into hydroxysodalite develops after ∼8 h. For SiO2/Al2O3ratios between 4 and 7, crystallization of the separate Na-X zeolite phase could be achieved and transformation into Na-P and hydroxysodalite occurred after 382 h and 190 h, respectively. For SiO2/Al2O3 ratios between 5 and 6, transformation of metakaolin into Na-X plus Na-A, hydroxysodalite and Na-P occurred, and the field within which Na-A and Na-X zeolite exists overlapped that of the other zeolites.The products of synthesis were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma optical emission spectrometry (ICP-OES), infrared spectroscopy (IR) and thermal analyses (TG-DTG-DTA).Obtaining pure Na-A and Na-X zeolite from kaolinite treated at low metakaolinitization temperature (650°C) and low hydrothermal synthesis temperature (68°C) represents a considerable economic advantage in terms of both energy and time.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3