Chlorite crystallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: a case study from the Bükk Mountains, Northeast Hungary

Author:

Árkai P.,Sadek Ghabrial D.

Abstract

AbstractX-ray diffraction chlorite crystallinity (ChC) indices and major element chemical compositions of chlorites and bulk rocks were determined and correlated in meta-igneous rocks from different Mesozoic formations in various tectonic units of the Bükk Mountains, NE Hungary. The rocks, of basic to acidic compositions, range from ocean-floor metamorphic prehnite-pumpellyite facies (diagenetic zone) through regional metamorphic prehnite-pumpellyite facies (anchizone) up to the regional metamorphic pumpellyite-actinolite and greenschist facies (epizone). As in the case of meta-sedimentary rocks, chlorite crystallinity can be applied as an empirical, complementary petrogenetic tool to determine relative differences in grades of low-temperature meta-igneous rocks. Electron microprobe and XRD data show that ChC is controlled mainly by the decreasing amounts of contaminants (mixed-layered components or discrete, intergrown phases of mostly smectitic composition) in chlorite with advancing metamorphic grade, up to the epizone. The apparent increase in calculated Aliv content of chlorite with increasing temperature is related to the decrease of these contaminants, as stated earlier by Jiang et al. (1994). On the basis of the significant correlations found between ChC and temperatures, derived by the chlorite-Aliv geothermometer of Cathelineau (1988), both methods may be used for estimating the approximate temperatures of metamorphism, in spite of the contrasting interpretation of chemical data from chlorites obtained by electron microprobe analyses. After determining the effects of changing bulk chemistry on chlorite composition and ChC, the chlorite crystallinity method may complement the correlation of the illite crystallinity-based zonal classification of meta-sediments and the mineral facies classification of meta-igneous rocks.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3