Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems – a review

Author:

Beaufort D.,Rigault C.,Billon S.,Billault V.,Inoue A.,Inoue S.,Patrier P.

Abstract

AbstractThis present study provides an overview of the clay-mineral reactions involved in the chloritization process in a mixed-layer mineral series, and focuses on the properties of the resulting lowtemperature chlorites (formed at <220°C) in diagenetic and hydrothermal systems. According to the literature, most chlorite species occurring in low-temperature geological systems are derived fromspecific clay precursors except for direct precipitates from solution in veins. In addition, three main types of clay-mineral series have been associated with these chloritization processes: saponite-to-chlorite, berthierineto- chlorite and kaolinite-to-sudoite reactions. The conversion of saponite to chlorite results in the most common sequence of trioctahedral clay minerals related to the occurrence of Mg-Fe trioctahedral chlorite in a wide variety of hydrothermal and diagenetic to very low-grade metamorphism environments. Two models were proposed in the literature to describe the saponite-to-chlorite conversion through corrensite. The first model is a continuous transition model based on solid-state transformation (SST) mechanisms and is valid in rock-dominated systems (closed micro-systems with very low fluid-rock ratios). The second model is a stepwise transition model based on dissolution-crystallization mechanisms (DC) and is efficient in fluid-dominated systems (open systems with high fluid-rock ratio). The berthierine to Fechlorite transition results in a sequence of trioctahedral phases which are related to chloritization processes in iron-rich and reducing environments. This transformation is a cell-preserved phase transition dominated by a SST mechanismthat operates simultaneously in different domains of the parental mineral and may be considered as a polymorphic mineral reaction. Finally, the conversion of kaolinite to sudoite (Al-Mg ditrioctahedral chlorite) has not been documented like the other two aforementioned conversion series. Despite the scarcity of detailed investigations, the conversion of kaolinite to sudoite through tosudite is considered a stepwise mineral reaction that is dominated by a DC mechanism. From a compilation of literature data, it appears that several parameters of hydrothermal and diagenetic chlorites differ, including the minimal temperature, the textural and structural characteristics and the extents of compositional fields. In hydrothermal systems, discrete chlorite occurs at a minimal temperature near 200°C, regardless of its chemical composition. In diagenetic systems, discrete chlorite occurs at minimal temperatures that vary according to its crystal chemistry (100–120°C for Mg-chlorite as opposed to 40–120°C for Fe chlorite). The strong discrepancy between the lowest temperature at which Mg- and Fe-chlorite form in buried sediments and in geothermal systems should result from drastically different heating rates, heat-flow conditions and tectonism between basins at passivemargins and geothermal systems at active margins. The morphology, structure and compositional fields of the diagenetic Fe-rich chlorite may have been inherited from those of the berthierine precursor. All of the chlorite species formed through theDC mechanism have good geothermometry potential. However, the SST mechanism in which berthierine is transformed into chlorite could have unexplored consequences regarding the use of the chemistry (including stable isotope composition) of diagenetic Fe-chlorite for reconstructing the burial history of sediments. Further investigations regarding the formationmechanisms of mixed-layerminerals are required to provide us with insight to understand the chloritization process in low-temperature geological systems.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3