Mica weathering in acidic soils by analytical electron microscopy

Author:

Aoudjit H.,Elsass F.,Righi D.,Robert M.

Abstract

AbstractThe mineralogy, crystallochemistry and microfabric of clay minerals from acidic soils were studied using transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Soil profiles, developed on saprolites, sampled in the main crystalline massifs of France represent different pedological environments. The study focused on the microsystem of mica weathering, which appeared to be the main source of secondary clay minerals, and involves microdivision, transformation and dissolution. Microdivision begins with the splitting of large particles along layer planes and their shearing normal to the layers. This induces the breakdown of particles of one hundred layers into particles having only a few layers. The transformation of micas follows two steps: they first transform into 1–1.4 nm mixed-layer minerals and then into hydroxy-Al interlayered vermiculite. The formation of hydroxy-Al interlayered vermiculite derived from micas is dominant in acidic soils; particles are generally small, consisting of only three to seven layers, and always have a dioctahedral composition, whatever the type of the original mica (trioctahedral or dioctahedral). Dissolution affects the surface layers or large domains of the core of the particles and leads to the formation of multi-elementary gels rich in Fe and Al.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3