The Fe-Mg-saponite solid solution series – a hydrothermal synthesis study

Author:

Baldermann A.,Dohrmann R.,Kaufhold S.,Nickel C.,Letofsky-Papst I.,Dietzel M.

Abstract

AbstractThe boundary conditions of saponite formation are generally considered to be well known, but significant gaps in our knowledge persist in respect to the influence of solution chemistry, temperature, and reaction time on the mineralogy, structure, stability, and chemical composition of laboratory-grown ferrous saponite. In the present study, ferrous saponite and Mgsaponite were synthesized in Teflon-lined, stainless steel autoclaves at 60, 120 and 180°C, alkaline pH, reducing conditions, and initial solutions with molar Si:Fe:Mg ratios of 4:0:2, 4:1:1, 4:1.5:0.5, 4:1.75:0.25, and 4:1.82:0.18. The experimental solutions were prepared by dissolution of sodium orthosilicate (Na4SiO4), iron(II)sulfate (FeSO4·6H2O) and magnesium chloride salts (MgCl2·6H2O with ≤ 0.005 mass% of K and Ca) in 50 mL ultrapure water that contained 0.05% sodium dithionite as the reducing agent. The precipitates obtained at two, five and seven days of reaction time were investigated by X-ray diffraction techniques, transmission electron microscopy analysis, infra-red spectroscopy, and thermo-analytical methods.The precipitates were composed mainly of trioctahedral ferrous saponite, with small admixtures of co-precipitated brucite, opal-CT, and 2-line ferrihydrite, and nontronite as the probable alteration product of ferrous saponite. The compositions of the obtained ferrous saponites were highly variable, (Na0.44−0.59K0.00−0.05Ca0.00−0.02) (Fe2+0.37−2.41Mg0.24−2.44Fe3+0.00−0.282.65−2.85[(Fe3+0.00−0.37Si3.63−4.00)O10](OH)2, but show similarities with naturally occurring trioctahedral Fe and Mg end members, except for the Al content. This suggests that a complete solid solution may exist in the Fe-Mg-saponite series.A conceptual reaction sequence for the formation of ferrous saponite is developed based on the experimental solution and solid compositions. Initially, at pH ≥ 10.4, brucite-type octahedral template sheets are formed, where dissolved Si-O tetrahedra are condensed. Subsequent reorganization of the octahedra and tetrahedra via multiple dissolution-precipitation processes finally results in the formation of saponite structures, together with brucite and partly amorphous silica. The extent of Fe2+incorporation in the octahedral template sheets via isomorphic substitution is suggested to stabilize the saponite structure, explaining (i) the abundance of saponite enriched inVIFe2+at elevated Fe supply and (ii) the effect of structural Fe on controlling the net formation rates of ferrous saponite.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3