Pedogenic alteration of illite in subtropical China

Author:

Han W.,Hong H. L.,Yin K.,Churchman G. J.,Li Z. H.,Chen T.

Abstract

AbstractPedogenic alteration of illite from red earth sediments in Jiujiang in subtropical China was investigated using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Illite, hydroxy-interlayered vermiculite (HIV), kaolinite and mixed-layer illite-HIV (I-HIV) are present in the soils. The characteristic reflections of the clay phases were 14 Å, 10–14 Å, 10 Å, and 7 Å, respectively. After Mg-glycerol saturations, the 14 Å peak of the samples did not expand, and after heating at 350°C and 550°C it shifted to 13.8 Å and 12 Å respectively, with no residual 14 Å reflection, suggesting the occurrence of hydroxy-interlayered vermiculite. The randomly interstratified I-HIV clays were characterized by a broad peak at 10–14 Å, which did not change its position after Mg-glycerol saturation, but collapsed to 10 Å after heating at 350°C and 550°C. HRTEM analysis showed different lattice fringes of 12 Å, 10 Å and 7 Å . Mixed-layer I-HIV, HIV-K and illite-kaolinite (I-K) were observed in the HRTEM images which represented the intermediate phases during illite alteration. The merging of two 10 Å illite layers into a 12 Å HIV layer, lateral transformation of one HIV layer into one kaolinite layer and alteration of one illite layer into two kaolinite layers illustrated the mechanisms of illite-to-HIV, HIV-to-kaolinite and illite-tokaolinite transformation, respectively. The proposed pedogenic alteration of illite and the weathering sequence of the clay minerals in Jiujiang is illite → I-HIV → HIV → HIV-K → kaolinite. In addition, illite may transform directly to kaolinite.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3