‘On the eclogites of Norway’—65 years later

Author:

Griffin W. L.

Abstract

AbstractThe Western Gneiss Region (WGR) of Norway consists largely of Proterozoic orthogneisses, but also contains paragneisses, peridotites, anorthosites, gabbros and coarse-grained intermediate-acid ‘rapakivi granites’. All of these lithologies enclose eclogites. Structural and isotopic data suggest that many of these rocks were juxtaposed by early Caledonian thrusting prior to eclogite formation at ca. 425 Ma.Low-P protoliths can be demonstrated for many eclogites. Prograde metamorphism to eclogite facies is demonstrated by inclusion suites within garnet grains and zoning of eclogite minerals. The regional distribution of KD (gnt/cpx) and Xcpxjd shows a decrease in Tmax, and in the corresponding P, away from the present coastline. The lowest values (500 °C, 10 kbar) are found in the Sunnfjord area and the highest (∼ 800 °C) along the coast of Sunnmøre and Nordmøre.Maximum pressures were reached at temperatures 100–200° < Tmax. This P-T-t path is consistent with the preservation of jadeite-rich cpx (and possible coesite) in the coastal regions. Earlier overestimates of Pmax, based on partitioning of Al between opx and gnt, resulted from combination of early low-T (low-Al) opx and T values derived from cpx/gnt equilibrated at Tmax. Despite pervasive later amphibolitization, high-P assemblages (phengite + kyanite, omphacite + quartz) are locally preserved within gneisses near the coast. The high-P metamorphism can be explained by westward subduction of the Baltic continental plate beneath the Greenland plate, during the Caledonian orogeny.At least some of the Mg-Cr garnet peridotites of the WGR were derived from low-P protoliths (spinel ± chlorite peridotites, enclosing high-Al pyroxenites). While Sm-Nd mineral ages of most eclogites cluster around 425 Ma, garnet peridotites and their enclosed garnet pyroxenites give Proterozoic Sm-Nd mineral ages (1700–1000 Ma). The tectonic position of the Mg-Cr garnet peridotites, relative to the Caledonian high-pressure metamorphism, remains to be resolved.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3