The thermal transformation of datolite, CaBSiO4(OH), to boron-melilite

Author:

Tarney J.,Nicol A. W.,Marriner Giselle F.

Abstract

SummaryA kinetic and X-ray study of the dehydroxylation of datolite, CaBSiO4(OH), has shown that the decomposition occurs very rapidly above 700°C in air, with an activation energy for the reaction of the order of 200 kcal mole −1. The transformation is topotactic, the dehydroxylated phase being tetragonal with a 7·14 Å, c 4·82 Å, and particularly well formed even at the lowest temperatures of decomposition. Single-crystal studies have shown that two orientations of the new phase exist and that the original a of datolite becomes the unique axis of the tetragonal phase while the tetragonal a axes are oriented either parallel to or at 45° to the b and c axes of datolite. The new phase appears to be a boron-containing analogue of the melilite structure, composition Ca2SiB2O7, but is metastable. The basic sheet structure is preserved during the transformation but a reorganization of the tetrahedral layer from the 4- and 8-membered rings of datolite to the 5-membered rings of the new phase is involved, together with effective removal of protons and some silicon. The transformation can be explained in terms of an inhomogeneous reaction mechanism involving migration of calcium and boron into the new phase domains and counter-migration of silicon and protons, but with only minor readjustment of oxygens. The high activation energy of the reaction is explicable in terms either of the effort necessary to remove silicon from the domains of the new phase or of the difficulty of moving the large calcium ions through a relatively close-packed structure.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3