Micropores and micropermeable texture in alkali feldspars: geochemical and geophysical implications

Author:

Walker F. David L.,Lee Martin R.,Parsons Ian

Abstract

AbstractScanning Electron Microscopy and Transmission Electron Microscopy show that normal, slightly turbid alkali feldspars from many plutonic rocks contain high concentrations of micropores, from ∼1 µm to a few nm in length, typically 0.1 µm. There may be 109 pores mm−3 and porosities as high as 4.75 vol.% have been observed, although ∼1% is typical. Only ‘pristine’ feldspars, which are dark coloured when seen in the massive rock, such as in larvikite and some rapakivi granites, are almost devoid of pores. Weathering enlarges prexisting pores and exploits sub-regularly spaced edge dislocations which occur in semicoherent microperthites, but the underlying textures which lead to skeletal grains in soils are inherited from the high temperature protolith. Most pores are devoid of solid inclusions, but a variety of solid particles has been found. Although the presence of fluid in pores cannot usually be demonstrated directly, crushing experiments have shown that Ar and halogens reside in fluids. Some pores are ‘negative crystals’, often with re-entrants defined by the {110} Adularia habit, while others have curved surfaces often tapering to thin, cusp-shaped apices. The variable shape of pores accounts for the ability of some pores to retain fluid although the texture is elsewhere micropermeable, as shown by 18O exchange experiments.Apart from rare, primary pores in pristine feldspar, pore development is accompanied by profound recrystallization of the surrounding microtexture, with partial loss of coherency in cryptoperthites. This leads to marked ‘deuteric coarsening’ forming patch and vein perthite, and replacement of ‘tweed’ orthoclase by twinned microcline. The Ab- and Or-rich phases in patch perthite are made up of discrete subgrains and the cuspate pores often develop at triple-junctions between them. Coarsened lamellar and vein perthites are composed of microporous subgrain textures. These ‘unzipping’ reactions result from fluid-feldspar interactions, at T <450°C in hypersolvus syenites and T < 350°C in a subsolvus granites, and are driven by elastic strain-energy in coherent cryptoperthites and in tweed textures. Further textural change may continue to surface temperatures. In salic igneous rocks there is a general connection between turbidity and the type of mafic mineral present; pristine alkali feldspars occur in salic igneous rocks with a preponderance of anhydrous mafic phases.Because alkali feldspar is so abundant (and larger, 10 μm pores have previously been described in plagioclase), intracrystal porosity is a non-trivial feature of a large volume of the middle and upper crust. The importance of pores in the following fields is discussed: 39Ar/40Ar dating and ‘thermochronometry’; oxygen exchange; Rb and Sr diffusion; weathering; experimental low-temperature dissolution; development of secondary porosity and diagenetic albitization; leachable sources of metals; nuclear waste isolation; deformation; seismic anisotropy; electrical conductivity. Important questions concern the temperature range of the development of the textures and their stability during burial and transport into the deeper crust.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3