Re-evaluation of magma compositions and processes in the uppermost Critical Zone of the Bushveld Complex

Author:

Grant Cawthorn R.

Abstract

AbstractA detailed geochemical study is presented of the uppermost Critical Zone, especially of the footwall and hanging wall to the Merensky Reef, at Impala Platinum Mines in the Bushveld Complex. The approximately 100 m-thick sequence below the Merensky Reef consists of 13 distinct layers which have sharp boundaries. They are adcumulates with varying proportions of cumulus plagioclase, orthopyroxene and chromite.Experimental studies on the composition of coexisting orthopyroxene liquid indicate that the magma which produced this sequence contained between 4 and 6% MgO. The magma from which the Merensky Reef formed was more evolved than the footwall magma.Significant variations exist for both the En content of orthopyroxene and mg# number of whole-rock analyses in short vertical sections. Pyroxenite and norite always have higher values than anorthosite. Extremely sharp breaks in these values correlate with changes in modal proportions, and argue against both significant fractionation within the studied interval, and infiltration metasomatism. Quantitative modelling shows that the entire footwall section could have contained pyroxene with a uniform primary composition of En82, and that all the variation now observed reflects the effect of reaction with trapped magma.Two independent methods for determining the proportion of trapped liquid are presented, based on mg# number and incompatible element abundances. Both yield a uniform proportion in all samples of approximately 10%. Immiscible sulphide liquid from the Merensky Reef can be shown to have infiltrated downwards for <5 m, despite its high density contrast with silicate magma, very low viscosity and low crystallization temperature. Residual silicate magma would have had even more restricted mobility. The migration of residual liquid or fluid through pothole structures in the floor of the Merensky Reef is not supported by the present data.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3