Mineralogical characterization of paulingite from Vinarická Hora, Czech Republic

Author:

Lengauer C. L.,Giester G.,Tillmanns E.

Abstract

AbstractA sample of the zeolite paulingite from the locality Vinarická Hora was investigated by means of chemical, thermal, powder and single crystal X-ray methods. The fully transparent, colourless to pale yellow crystals exhibit the form {110} and occur together with phillipsite. The chemical composition is (Ca2.57K2.28Ba1.39Na0.38)(Al11.55Si30.59O84)·27H2O, Z = 16 with minor amounts of Mg (<0.05), Sr (<0.13), Mn (<0.01), and Fe (<0.04). The chemical differences from previously described paulingites are a high Ba-content, a lower Si/(Al+Fe) ratio of 2.64, and a reduced water-content. The calculated density is 2.098 g cm−3, and the observed refractive index is 1.482(2). The dehydration behaviour is characterized by a main weight loss from 24–190°C (−11.2 wt.%, ≅ 21H2O) and a minor weight loss from 190–390°C (−3.1 wt.%, ≅ 6H2O). The rehydration capability was proven up to 150°C. The dehydration process during the main weight loss is accompanied by a reduction of the cell volume of 11%. The refined lattice parameters of the X-ray powder data are a a = 35.1231 (5) Å and a = 33.7485(8) Å of an untreated and a dehydrated sample, respectively. A breakdown of the paulingite structure can be observed while the remaining water content decomposes. The single crystal X-ray refinement of this chemically different sample material derived three main cation positions, which are inside a so called paulingite or π-cage (Ca), between 8-rings of neighbouring π-cages (Ba), and in the centre of the non-planar 8-rings of the γ-cage (K). Further partially occupied cation positions (Ca,Na) were located in the planar 8-rings of the α- and γ-cages. No positions within the double 8-membered rings were detected. The water is localized around the main cation positions and in three clusters of partially occupied sites.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3