Abstract
AbstractSulfur-bearing monazite-(Ce) occurs in silicified carbonatite at Eureka, Namibia, forming rims up to ~0.5 mm thick on earlier-formed monazite-(Ce) megacrysts. We present X-ray photoelectron spectroscopy data demonstrating that sulfur is accommodated predominantly in monazite-(Ce) as sulfate, via a clino-anhydrite-type coupled substitution mechanism. Minor sulfide and sulfite peaks in the X-ray photoelectron spectra, however, also indicate that more complex substitution mechanisms incorporating S2– and S4+ are possible. Incorporation of S6+ through clino-anhydrite-type substitution results in an excess of M2+ cations, which previous workers have suggested is accommodated by auxiliary substitution of OH– for O2–. However, Raman data show no indication of OH–, and instead we suggest charge imbalance is accommodated through F– substituting for O2–. The accommodation of S in the monazite-(Ce) results in considerable structural distortion that may account for relatively high contents of ions with radii beyond those normally found in monazite-(Ce), such as the heavy rare earth elements, Mo, Zr and V. In contrast to S-bearing monazite-(Ce) in other carbonatites, S-bearing monazite-(Ce) at Eureka formed via a dissolution–precipitation mechanism during prolonged weathering, with S derived from an aeolian source. While large S-bearing monazite-(Ce) grains are likely to be rare in the geological record, formation of secondary S-bearing monazite-(Ce) in these conditions may be a feasible mineral for dating palaeo-weathering horizons.
Subject
Geochemistry and Petrology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献