Effects of acid mine drainage on clay minerals suspended in the Tinto River (Río Tinto, Spain). An experimental approach

Author:

Galan E.,Carretero M. I.,Fernandez-Caliani J . C.

Abstract

AbstractThe Tinto river is one of the most polluted stream environments in the world, as a result of both acid mine drainage and natural acid rock drainage. Two representative samples from the phyllosilicate-rich rocks exposed in the drainage basin (Palaeozoic chlorite-bearing slates and Miocene smectite-rich marls) were treated with acid river water (pH = 2.2) for different times to constrain the effects of extreme hydrogeochemical conditions on clay mineral stability. Illite and kaolinite did not show appreciable variations in their crystal chemistry parameters upon treatment. Chlorite underwent an incipient chemical degradation evidenced by the progressive loss of Fe in octahedral positions coupled with a shortening of the b unit-cell parameter, although no weathering products of chlorite were observed. Smectite and calcite were rapidly and fully dissolved thus neutralizing the water acidity, and subsequently Fe and Al oxy-hydroxides and opaline silica precipitated from the aqueous solution, together with a neoformed amorphous silicate phase largely enriched in Al and Mg.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3