Carbonatites and lamprophyres of the Gardar Province – a ‘window’ to the sub-Gardar mantle?

Author:

Coulson I. M.,Goodenough K. M.,Pearce N. J. G.,Leng M. J.

Abstract

AbstractCarbonatite magmas are considered to be ultimately derived from mantle sources, which may include lithospheric and asthenospheric reservoirs. Isotopic studies of carbonatite magmatism around the globe have typically suggested that more than one source needs to be invoked for generation of the parental melts to carbonatites, often involving the interaction of asthenosphere and lithosphere.In the rift-related, Proterozoic Gardar Igneous Province of SW Greenland, carbonatite occurs as dykes within the Igaliko Nepheline Syenite Complex, as eruptive rocks and diatremes at Qassiarsuk, as a late plug associated with nepheline syenite at Grønnedal-Íka, and as small bodies associated with ultramafic lamprophyre dykes. The well-known cryolite deposit at Ivittuut was also rich in magmatic carbonate. The carbonatites are derived from the mantle with relatively little crustal contamination, and therefore should provide important information about the mantle sources of Gardar magmas. In particular, they are found intruded both into Archaean and Proterozoic crust, and hence provide a test for the involvement of lithospheric mantle.A synthesis of new and previously published major and trace element, Sr, Nd, C and O isotope data for carbonatites and associated lamprophyres from the Gardar Province is presented. The majority of Gardar carbonatites and lamprophyres have consistent geochemical and isotopic signatures that are similar to those typically found in ocean island basalts. The geochemical characteristics of the two suites of magmas are similar enough to suggest that they were derived from the same mantle source. C and O isotope data are also consistent with a mantle derivation for the carbonatite magmas, and support the theory of a cogenetic origin for the carbonatites and the lamprophyres. The differences between the carbonatites and lamprophyres are considered to represent differing degrees of partial melting of a similar source.We suggest that the ultimate source of these magmas is the asthenospheric mantle, since there is no geochemical or isotopic evidence for their having been derived directly from ancient, enriched sub-continental lithospheric mantle. However, it is likely that the magmas actually formed through a two-stage process, with small-degree volatile-rich partial melts rising from the asthenospheric mantle and being ‘frozen in’ as metasomites, which were then rapidly remobilized during Gardar rifting.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3