Author:
Frost R. L.,Martens W.,Williams P. A.,Kloprogge J. T.
Abstract
AbstractThe molecular structure of the three vivianite-structure, compositionally related phosphate minerals vivianite, baricite and bobierrite of formula M32+(PO4)2.8H2O where M is Fe or Mg, has been assessed using a combination of Raman and infrared (IR) spectroscopy. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 3460, 3281, 3104 and 3012 cm−1 for vivianite. The high wavenumber band is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH-bending modes where a strong IR band centred around 1660 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH-bending bands fromstrongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. The Raman phosphate PO-stretching region shows strong similarity between the three minerals. In the IR spectra, complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong IR bands around 800 cm−1 are attributed to water librational modes. The spectra of the three minerals display similarities due to their compositions and crystal structures, but sufficient subtle differences exist for the spectra to be useful in distinguishing the species.
Subject
Geochemistry and Petrology
Cited by
169 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献