Characterization of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy

Author:

Gianfagna A.,Ballirano P.,Bellatreccia F.,Bruni B.,Paoletti L.,Oberti R.

Abstract

AbstractAn epidemiological and environmental study of the area around Biancavilla (CT, Italy) was prompted by a significant incidence of malignant pleural mesothelioma, which was not related to a specific occupational activity. An environmental dispersion of fibres was found and attributed to local quarry activities, whose extracted volcanic products also contained fibrous amphiboles and had been used extensively in the local building industry, especially in the period 1960–1970.Abundant yellowish and grey-whitish asbestiform amphiboles with strongly asymmetric morphology were identified in this study, intimately associated with albitic feldspar, hematite and very minor orthopyroxene. These minerals fill the pores of the altered volcanic host rock (metasomatized benmoreitic lavas and pyroclastic rocks). The Rietveld method allowed a quantitative mineralogical analysis of the mineral mixture (24% amphiboles-asbestos, 73% feldspar and 3% hematite).The crystal size and morphology of the grey-whitish amphibole fibres do not allow quantitative microprobe analyses; semi-quantitative EDS-SEM analyses of a prismatic mineral known to be fluoroedenite and the unknown fibrous crystals studied here suggest that they are the same mineral, although the fibres are generally depleted in Ca and Mg. The F content is the same in both occurrences. Unitcell parameters of the fibres are: a = 9.815(1), b = 17.992(3), c = 5.2733(6) Å , β = 104.547(9)º, V = 901.4(3)Å3, and the refractive indices are in the range 1.60 –1.63. Optical, chemical and Rietveld analyses of the fibres confirm their similarity with the yellow prismatic fluoro-edenite previously analysed.Biancavilla is the first occurrence of amphibole fibres in a volcanic context (the Etnean volcanic complex). These fibres have a very anomalous composition (high ANa, IVAl and O3F contents) in comparison to other known oncogenic minerals.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3