Fe isotope fractionation during the precipitation of ferrihydrite and transformation of ferrihydrite to goethite

Author:

Clayton R. E.,Hudson-Edwards K. A.,Malinovsky D.,Andersson P.

Abstract

AbstractFerrihydrite and goethite are amongst the most important substrates for the sorption of contaminants in soil and other environmental media. Isotopic studies of the transition elements, particularly those that exhibit more than one oxidation state and show pH- and/or redox-sensitive behaviour at low temperatures, have been shown to be potentially useful present-day and past proxies for redox (or palaeoredox) conditions. We have made preliminary investigations of Fe isotope fractionation that take place during the formation of FeIII (oxy)hydroxides (FeIIIox) from an aqueous FeIII(NO3)3 solution (FeIIIaq) under laboratory conditions. We have attempted to keep the chemical system simple by excluding 'vital effects' and major changes in redox through the maintenance of abiotic conditions and use of FeIIIaq. Isotopic measurements (56Fe/54Fe, 57Fe/54Fe) of the FeIII(NO3)3 stock solution, the original ferrihydrite and the mixed ferrihydrite/goethite-supernatant FeIIIaq 'pairs' were carried out using a double focusing multicollector inductively coupled plasma mass spectrometer. The results reveal an apparent systematic variation indicating larger ΔFeIIIaq—FeIIIox with decrease in the ferrihydrite:goethite ratio, which reflects the time allowed for isotopic exchange. These values range from virtually zero (0.03%) after 24 h to 0.30% after 70 h. In each FeIIIox-FeIIIaq 'pair' the lighter Fe isotope is partitioned into the FeIIIox, leaving the FeIIIaq isotopically heavier. The observed fractionation reflects isotopic exchange of Fe between the FeIIIox and FeIIIaq upon at least a two step transition of ferrihydrite to goethite.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3