Surface oxidation of rhodonite: structural and chemical study by surface scattering and glancing incidence XAS techniques

Author:

Farquhar M. L.,Wogelius R. A.,Charnock J. M.,Wincott P.,Tang C. C.,Newville M.,Eng P. J.,Trainor T. P.

Abstract

AbstractOxidative dissolution of a primary Mn-silicate phase (rhodonite) was studied via synchrotron X-ray techniques. The study was designed to combine the element-specific chemical technique of Glancing Incidence X-ray Absorption Spectroscopy (GIXAS) with the surface structural technique of X-ray scattering in order to produce the first depth resolved study of Mn-silicate low-temperature reactivity. A chemo-mechanically polished polycrystalline rhodonite sample was characterized and then reacted with pH 3.5 nitric acid. The surface originally had a mosaic structure and 15.5 (±1) Å r.m.s. roughness. Surface composition was not measurably different from bulk rhodonite before reaction, indicating that the surface preparation regimen had not produced an altered surface. After 1 h of reaction, the roughness of the mineral surface decreased and reflectivity oscillations developed, resulting from the formation of a leached layer. This layer was 74.7 (±2) Å thick with an electron density equal to 72% of that of bulk rhodonite (equal to the loss of ~1 in 2 Mn atoms). Both the primary and the buried interfaces had similar roughnesses; 4.9 and 4.5 (±1.0) Å , respectively. Diffuse scatter indicated that the correlation length between surface features also decreased. The GIXAS analysis showed that the Mn remaining in the surface had become oxidized, with the degree of oxidation decreasing as a function of depth. Oxidation penetrated at least 140 Å into the structure. A further 2.5 h of reaction at pH 3.5 caused dissolution of the leached layer and reduced the thickness of this altered region to 16.0 (±2) Å , while surface roughness increased slightly to 6.2 (±1.0) Å . Depletion of Mn in this region increased only slightly relative to the first reaction step; the electron density was 67% that of bulk rhodonite, equivalent to the loss of 2 in 3 Mn atoms. The thickness of the oxidized region however, persisted. Analysis by XPS on the same specimen corroborates the X-ray results.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3