Interpretation of SHRIMP and isotope dilution zircon ages for the Palaeozoic time-scale: II. Silurian to Devonian

Author:

Compston W.

Abstract

AbstractIon probe data are documented for zircons from tuffs within the early Llandovery, the mid-Caradoc and the Ludlow. 206Pb/238U ages for tuff magmatism have been interpreted using mixture-modelling to distinguish inheritance and Pb loss. Comparisons with the reference zircon SL13 have been improved through a direct determination of the component of secondary ion discrimination caused by changes in target potential.Interpretation of the SHRIMP data for the Birkhill ash (Scotland, Llandovery) is ambiguous. The more conservative possibility is that most zircons are 439 Ma, in close agreement with the previous isotope dilution ages for the same zircon concentrate. The other is that the 439 Ma group should be split into an inherited population at ˜447 Ma, with a minority at ˜434 Ma that corresponds with the ash volcanism. Although imprecise, the latter is detectably younger than the multi-grain MSID age, which itself might be a composite of the same two ages.Most zircon analyses from the mid Caradoc Pont-y-ceunant Ash, Wales, fit an age-group at 452.5 Ma, similar to its published 206Pb/238U age by MSID, with a definite older age group at ˜476 Ma but none showing Pb loss. By contrast, those from the Millbrig bentonite (Virginia) of the same age mainly fall in a well-defined post-eruption age group at 435 Ma, while the remainder give 456 Ma. Most zircon analyses from the Kinnekulle bentonite, Sweden, fall into an apparent 464 Ma group which exceeds other estimates for the mid-Caradoc magmatism. It is interpreted to be a composite age, caused by an inability to resolve it into a younger magmatic and older inherited group owing to the larger analytical errors of the Kinnekulle data. The best SHRIMP estimate for the mid-Caradoc volcanism is 452.6±1.7 Ma found by combining the ages for the three volcanic units. During unmixing of the combined ages, the Kinnekulle ages are redistributed and the 464 Ma ‘group’ vanishes. Precambrian grains are present in all the above volcanics.The original and new zircon analyses from the Laidlaw Volcanics (Canberra, Australia) of Ludlow age, are dominated by three groups of inherited zircons at ˜436 Ma, ˜450 Ma and ˜476 Ma, which makes it unfavourable for time-scale definition using zircons. The youngest zircon age group is 417.5 Ma (˜30%), but this is not associated with overgrowths on older grains or with wholly younger grains. Instead, it is composed of sporadic low ages within older grains suggestive of Pb loss rather than magmatic zircon growth. Nevertheless, the age for volcanism is 420.7±1.1 Ma based on published Rb-Sr and K-Ar dating, so that the youngest zircon group does appear to be associated with volcanism.One zircon U-Pb age for the Frasnian by MSID is much older than a precise age by other decay schemes, and another for the Lochkovian is significantly older than a recent SHRIMP age for the same Stage. By small changes in the common Pb composition, both MSID ages can be changed from single volcanic ages affected by Pb loss to an inherited and younger volcanic age, which removes the conflict with the other determinations.A zircon-based geological time-scale is constructed from the Ordovician to the Carboniferous using the time-points presented and discussed in Parts I and II of this paper.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3