A comparison of radiation effects in crystalline ABO4-type phosphates and silicates

Author:

Meldrum A.,Boatner L. A.,Ewing R. C.

Abstract

AbstractThe effects of ion irradiation in the ABO4-type compounds were compared by performing experiments on four materials that include the most common crystal structures (monazite vs. zircon) and chemical compositions (phosphates vs. silicates) for these phases. Pure synthetic single crystals of ZrSiO4, monoclinic ThSiO4, LaPO4 and ScPO4 were irradiated using 800 keV Kr+ ions. Radiation damage accumulation was monitored as a function of temperature in situ in a transmission electron microscope. The activation energies for recrystallization during irradiation were calculated to be 3.1–3.3 eV for the orthosilicates but only 1.0–1.5 eV for the isostructural orthophosphates. For the ion-beam-irradiated samples, the critical temperature, above which the recrystallization processes are faster than damage accumulation and amorphization cannot be induced, is >700°C for ZrSiO4 but it is only 35°C for LaPO4. At temperatures above 600°C, zircon decomposed during irradiation into its component oxides (i.e. crystalline ZrO2 plus amorphous SiO2). The data are evaluated with respect to the proposed use of the orthophosphates and orthosilicates as host materials for the stabilization and disposal of high-level nuclear waste. The results show that zircon with 10 wt.% Pu would have to be maintained at temperatures in excess of 300°C in order to prevent it from becoming completely amorphous. In contrast, a similar analysis for the orthophosphates implies that monazite-based waste forms would not become amorphous or undergo a phase decomposition.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3