Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits

Author:

Kempe U.,Götze J.

Abstract

AbstractApatite samples from rare-metal mineralization were investigated by a combination of cathodoluminescence (CL) microscopy and spectroscopy, microchemical analysis and trace element analysis. Internal structures revealed by CL can be related to variations in the crystal chemistry and may sometimes reflect changes in the composition of the mineralizing fluids.Apatite from mineralization related to alkaline rocks and carbonatites (Type 1) typically exhibits relatively homogeneous blue and lilac/violet CL colours due to activation by trace quantities of rare earth element ions (Ce3+, Eu2+, Sm3+, Dy3+ and Nd3+). These results correlate with determined trace element abundances, which show strong light rare earth element (LREE) enrichment for this type of apatite. However, a simple quantitative correlation between emission intensities of REE3+/2+ and analysed element concentrations was not found.Apatite from P-rich altered granites, greisens, pegmatites and veins from Sn-W deposits (Type 2) shows strong Mn2+-activated yellow-greenish CL, partially with distinct oscillatory zoning. Variations in the intensity of the Mn2+-activated CL emission can be related either to varying Mn/Fe ratios (quenching of Mn activated CL by Fe) or to self-quenching effects in zones with high Mn contents (>2.0 wt.%). The REE distribution patterns of apatite reflect the specific geological position of each sample and may serve as a “tracer” for the REE behaviour within the ore system. Although the REE contents are sometimes as high as several hundred parts per million, the spectral CL measurements do not exhibit typical REE emission lines because of dominance of the Mn emission. In these samples, REE-activated luminescence is only detectable by time-resolved laser-induced luminescence spectroscopy.Both types of apatite (Type 1 in the core and Type 2 in the rim) were found in single crystals from the Be deposit Ermakovka (Transbaikalia). This finding proves the existence of two stages of mineralization within this deposit.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3