Adsorptive removal of stable and radioactive Pb(II) isotopes from aqueous solution using bentonite, zeolite and perlite: characterization, isotherm and thermodynamic studies

Author:

Uygun Osman,Güven Rufiyet,Çakal Gaye Ö.ORCID

Abstract

AbstractIn this study, stable and radioactive lead removal from aqueous solution by adsorption using bentonite, zeolite and perlite minerals obtained from various locations in Türkiye was studied in batch experiments. The adsorbents were first characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and then the physicochemical properties were determined. The effects of various factors that influence adsorption, such as solution pH, adsorbent dosage, contact time, initial Pb2+ ion concentration, temperature and shaking rate, were studied. The adsorption of Pb2+ was modelled using the Langmuir, Freundlich and Dubinin–Radushkevich isotherms. The adsorption capacities of the minerals for Pb2+ followed the order: bentonite > zeolite > perlite, and the maximum adsorption capacities were 131.6, 36.1 and 21.5 mg g–1, respectively. The adsorption data fit well with the Langmuir isotherm. The bonding of lead ions on the adsorbents was confirmed by XRF and FTIR analyses after the adsorption process. The adsorption of Pb2+ ions on the adsorbents was spontaneous and endothermic. The adsorption process took place by cation exchange in addition to electrostatic interaction. Furthermore, radioactive 210Pb2+ adsorption on bentonite, zeolite and perlite was studied, with the analyte being analysed using a liquid scintillation counter. It was seen that in addition to Pb(II) ions, these minerals also adsorbed the radioactive decay products of 210Pb, which were 210Po and 210Bi. The removal percentages of 210Pb were 95%, 38% and 30% and those of 210Po were 75%, 60% and 74% for bentonite, zeolite and perlite, respectively.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3