Generalized relationships between the ionic radii of octahedral cations and the b crystallographic parameter of clays and related minerals

Author:

Petit SabineORCID,Decarreau Alain,Grégoire BrianORCID,Ferrage Eric

Abstract

AbstractOver several decades, a wealth of literature has been devoted to correlations between the chemistries of phyllosilicates and their crystallographic unit-cell parameter values. The c parameter is currently used because of its relation to the layer-to-layer distance, characteristic of the various families of phyllosilicates. The b parameter is also of interest because it allows measurement of the layer lateral dimensions and inherent structural adjustments. This unit-cell distance can be extracted from X-ray diffraction traces from the (06ℓ;33ℓ) diffraction region and by attributing the main diffraction peak observed to a 060 reflection, leading to the relationship b = 6.d(060). The aim of this paper is to revisit the relationships between the b value (or equivalent) of the phyllosilicate (i.e. TO, TOT and TOTO) or hydroxide (i.e. hydroxide, oxyhydroxide and layered double hydroxide) families and the layer chemistry based on a mean ionic radius R of octahedral cations, calculated as $R = \mathop \sum \nolimits_{i = 1}^n ( {r_i.x_i} )$, where ri is the ionic radius of the octahedral cation i and xi is its molar fraction over n types of octahedral cations ($\mathop \sum \nolimits_{i = 1}^n ( {x_i} ) = 1$). The data were collected from the literature and involved both natural and synthetic samples with both dioctahedral and trioctahedral structures of the octahedral sheet. The results showed that b values can be linked strongly to R, leading to suitable linear regressions for all of the studied structures. All correlations were found to be applicable irrespective of the di- or trioctahedral nature of the octahedral sheet, and these are discussed in light of (1) the lateral dimension of the octahedral sheet and (2) the dimensional misfit between the tetrahedral and octahedral sheets. For hydroxide families, all data can be gathered on a single b vs R correlation line, and the dimensional properties of the octahedral sheet can be interpreted simply based on an oxygen–cation–oxygen mean distance. For TO structures, two general b vs R correlation trends were reported, and these were assigned to two adjustment mechanisms corresponding to distinct types of tetrahedral and octahedral distortions. For the mica TOT family, two main trends were also reported, whereas the use of the synthetic mica series allowed us to demonstrate that the obtained scattering of data was mainly driven by the presence of multiple limited solid solutions. Such chemical complexity was also noted for smectites, especially regarding the tetrahedral composition and associated variability in layer charge. This variability made it difficult to propose a general regression correlating b to R values for smectites, although the regression obtained for neutral TOT layers can apply as a first-order relation. Finally, a single general b vs R correlation was obtained for chlorites, and the observed slope of the regression was interpreted according to the role played by the isolated hydroxide sheet on the evolution of the lateral dimension of the structures.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3