Efficacy of smartphone-compatible optical instrument for assessing melanocytic nevi for malignancy

Author:

Gaydina TA1ORCID,Dvornikova EG1

Affiliation:

1. Pirogov Russian National Research Medical University, Moscow, Russia

Abstract

Early detection of melanocytic nevus progression to malignant melanoma is a pressing concern. Traditionally, patients with multiple melanocytic nevi (MMN) are monitored for extended periods of time and excisional biopsies are performed on individual suspicious melanocytic nevi (MN). This approach is costly and tremendously time-consuming for both doctors and patients. The aim of this study was to evaluate the efficacy of a smartphone-compatible optical instrument in the assessment of MN for malignancy. Seven patients aged 43 to 65 years with MMN on the trunk and upper/lower extremities were followed-up for 4 years. Dermoscopy images of MN were taken and analyzed using a Handyscope smartphone-compatible optical system operated at 20x magnification and a Handyscope3 application. A total of 74 MN were surgically removed during the follow-up period. None of the patients had melanoma. The results of dermoscopy image analysis generated by the convolutional neural network coincided with histopathology findings in all cases. The optical Handyscope system demonstrated its efficacy in assessing MN for malignancy. AI can be used for primary screening of MMN dermoscopy images. However, histopathological verification of the diagnosis is still needed.

Publisher

Pirogov Russian National Research Medical University

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Primary multiple malignant skin tumors: melanoma and basal cell carcinoma;Vestnik dermatologii i venerologii;2023-05-17

2. The Principles of Examination of Patients with Detected Melanoma Suspected Skin Neoplasm in the Primary Health Care Stage;The Russian Archives of Internal Medicine;2022-03-28

3. LinguAPP: An m-Health Application for Teledentistry Diagnostics;International Journal of Environmental Research and Public Health;2022-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3