Experimental study of dendrimer-based nanoparticles with RGD-peptide for anticancer radionuclide therapy

Author:

Stukalov Yu.V.1,Grigorieva E.Yu.1,Smirnova A.V.2,Lipengolts A.A.3ORCID,Kubasova I.Yu.1,Pozdniakova N.V.1,Lukashina M.I.4ORCID

Affiliation:

1. Blokhin National Medical Research Center of Oncology, Moscow

2. Blokhin National Medical Research Center of Oncology, Moscow; The Loginov Moscow Clinical Scientific Center, Moscow

3. Blokhin National Medical Research Center of Oncology, Moscow; Burnazyan Federal Medical Biophysical Center, Moscow

4. Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow

Abstract

Radionuclide therapy (RNT) is an effective modality for treating multiple metastases in patients with cancer. The list of malignancies that can be managed with RNT expands with the arrival of novel tumoritropic radiopharmaceuticals (RP). A versatile delivery platform capable of carrying various therapeutic and diagnostic radionuclides, as well as vector molecules needed to achieve sufficient specificity to tumor cells and ensure therapeutic efficacy may hold great promise for radiation therapy. The aim of this work was to assess the performance of a delivery system based on the original dendrimer. The dendrimer demonstrated low toxicity in mice (LD50 was 779 ± 111 mg/kg). To study the specificity of the dendrimer to tumor cells and its therapeutic efficacy, we used a nanostructure (NS) composed of the dendrimer itself, the RGD peptide and 188Re (188Re-NS). Lewis lung carcinoma LLC1 was used as a tumor model. The biodistribution analysis revealed that the compound effectively accumulated in the tumor demonstrating a tumor-to-normal ratio >1 (relative to healthy organs and tissues) and retention time of at least 6 hours. Injections of 185 MBq/kg 188Re-NS caused a statistically significant inhibition of tumor growth (p < 0.05) by day 7 following the injection (Т/С = 5%), which remained stable for 6 days. Our findings suggest that the proposed dendrimer is a promising platform for RP delivery.

Publisher

Pirogov Russian National Research Medical University

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Binary technologies of malignant tumors radiotherapy;Journal of Physics: Conference Series;2021-10-01

2. NUCLEAR MEDICINE TECHNIQUES FOR IN VIVO ANIMAL IMAGING;Siberian journal of oncology;2020-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3