Relationship between pro-inflammatory cytokine levels and blood bacterial DNA composition in obese children

Author:

Roumiantsev SA1,Kirilina IV1,Gaponov AM2,Khusnutdinova DR3,Grigoryeva TV3,Teplyakova ED4,Makarov VV5,Yudin SM5,Shestopalov AV1

Affiliation:

1. Pirogov Russian National Research Medical University, Moscow, Russia

2. Center for Digital and Translational Biomedicine, Center for Molecular Health, Moscow, Russia

3. Kazan (Volga Region) Federal University, Kazan, Russia

4. Rostov State Medical University, Rostov-on-Don, Russia

5. Center for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia

Abstract

Adipose tissue, being a source of chronic low-grade inflammation, activates cells of the immune system by producing cytokines and chemokines. The balance between pro- and anti-inflammatory molecules and their relationship with blood bacterial DNA in obese children and adolescents has not been studied sufficiently. This study aimed to find patterns of interaction between fractions of bacterial families in healthy and obese children, analyze cytokine levels and their relationship with blood bacterial DNA content, evaluate alpha diversity of blood microbiome and similarities of blood and fecal microbiomes. We examined 163 individuals (children and adolescents), who were divided into 2 groups, obese (n = 80, obesity classes I through III) and healthy (n = 83). The material sampled and studied was venous blood. Only individuals that have not been taking antibiotics, pro- and prebiotics for at least 3 months before the study were included. The methods employed were multiplex ELISA (enzyme immunoassay) and 16S rRNA gene sequencing (region V3–V4). From the angle of bacterial families, we found differences in their content (fractions) in blood microbiome and the frequency of isolation of their DNA therein. Nineteen families accounted for over three quarters of all bacterial DNA identified in the blood. In obese children, one of the dominating roles was played by Ruminococcaceae, with their DNA a key part of the microbiome's alpha diversity, while in healthy participants this could be said about Bacteroidaceae. Analyzing beta diversity, we found that in obese children, fecal and blood microbiomes differed significantly, which indicates, mainly, extra-intestinal translocation of bacterial DNA. Obese children exhibited increased content of IL17A (p = 0.017) and PD-L1 (p = 0.021); there were differences in blood microbiome between groups. We identified the patterns of interaction between bacterial DNA fractions, and assessed cytokine levels.

Publisher

Pirogov Russian National Research Medical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3