Levels of miR-374 increase in BeWo b30 cells exposed to hypoxia

Author:

Knyazev EN1,Paul SYu1

Affiliation:

1. National Research University Higher School of Economics, Moscow, Russia

Abstract

In humans, trophoblast hypoxia during placental development can be a cause of serious pregnancy complications, such as preeclampsia and fetal growth restriction. The pathogenesis of these conditions is not fully clear and may be associated with changed expression of some genes and regulatory molecules, including miRNA, in trophoblast cells. The aim of this study was to analyze miRNA profiles and measure the expression of their target genes in a model of trophoblast hypoxia. Human choriocarcinoma BeWo b30 cells were used as a trophoblast model. Hypoxia was induced by cobalt chloride (CoCl2) and an oxyquinoline derivative. MRNA and miRNA expression profiles were evaluated by means of next generation sequencing (NGS); the expression of individual genes was analyzed by PCR. We studied the secondary structure of mRNAs of target genes for those miRNAs whose expression had changed significantly and analyzed potential competition between these miRNAs for the binding site. The observed changes in the expression of the key genes involved in the response to hypoxia confirmed the feasibility of using CoCl2 and the oxyquinoline derivative as hypoxia inducers. The analysis revealed an increase in miR-374 levels following the activation of the hypoxia pathway in our trophoblast model. The changes were accompanied by a reduction in FOXM1 mRNA expression; this mRNA is a target for hsa-miR-374a-5p and hsa-miR374b-5p, which can compete with hsa-miR-21-5p for the binding sites on FOXM1 mRNA. The involvement of FOXM1 in the regulation of the invasive cell potential suggests the role of miR-374 and FOXM1 in the pathogenesis of disrupted trophoblast invasion during placental development as predisposing for fetal growth restriction and preeclampsia.

Publisher

Pirogov Russian National Research Medical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3